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ABSTRACT

Let u(z,t) be the possibly discontinuous entropy solution of a nonlinear scalar conser-

vation law with smooth initial data. Suppose u_(x,t) is the solution of an approximate

viscosity regularization, where e > 0 is the small viscosity amplitude. We show that by

post-processing the small viscosity approximation u,, we can recover pointwise values of u

and its derivatives with an error as close to c as desired.

The analysis relies on the adjoint problem of the forward error equation, which in this

case amounts to a backward linear transport equation with _uous coefficients. The

novelty of our approach is to use a (generalized) E-condition of the forward problem in order

to deduce a W 1'°° energy estimate for the discontinuous backward transport equation; this,

in turn, leads us to e-uniform estimate on moments of the error u, - u.

Our approach does not 'follow the characteristics' and, therefore, applies mutatis mutan-

dis to other approximate solutions such as E-difference schemes.
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Contract No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in
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1. INTRODUCTION

Consider the scalar, genuinely nonlinear conservation law

(1.1) + = o.

It is well-known, e.g. [8], that (1.1) may admit many possible weak solutions. To guarantee

uniqueness (and in fact Ll-stability), we therefore have to restrict our attention to a subclass

of possible weak solutions. Namely, we select weak solutions of (1.1) which are realizable as

small viscosity solutions of

0 0-_ 05(1.2) + [f(u,(x,0)] = eQ' o.

With this in mind, we recall that u,(., t) converges strongly in L 1 to u(., t), where u(., t)

is the unique, so-called entropy solution of (1.1). The i_1 convergence rate in this case is

upper bounded by

(1.3) llu,(.,t) - u(.,t)llL_ < Const.v_.

Consult [61, [12] for the discrete analogue of monotone difference schemes, and [14] for spectral

viscosity approximations.

We are not satisfied with this error estimate for two related reasons.

1. Ideally, one would like to recover the entropy solution, u(x, t), within 0(¢) error. Al-

though the estimate (1.3) is sharp, it fails to do so because of the following reason.

2. The error estimate (1.3) is a global one, while in many practical cases one is interested

in the local behavior of u(z,t). Consequently, when the error is measured by the

Ll-norm, there is a loss of information due to the 'poor' resolution of shock (and, in

the general case, also contact) waves in u(m, t), by the corresponding viscous layers in

In this paper we are concerned with the loca.__.]convergence rate of the small viscosity

solutions, u,(z, t), towards the entropy solution, u(z, t). Assume that initially, at t = 0, the

initial conditions of the small viscosity problem, u,(., 0), are consistent with smooth initial

conditions of the conservation law (1.1). Then for any t > 0 we show, in Section 4, that by

post-processing the small viscosity solution u,(., t), we can recover pointwise values of the

(possibly discontinuous) entropy solution u(., t) and its derivatives, with error as close to ¢

as desired. It should be emphasized that our approach does not "follow the characteristics"

and therefore could be extended to certain discrete approximations for nonlinear conservation



laws suchas E-difference schemes [10]. Indeed, the present study was originally motivated

by recent numerical experiments reported in [17]. By post-processing of Spectral Viscosity

(SV) approximations [16], we were able to recover the pointwise values of discontinuous

conservative solutions with spectral accuracy, in agreement with the formally spectrally

small viscosity regularization of the SV method.

The paper is organized as follows. In Section 2 we study linear transport equations with

possibly discontinuous coefficients. We show that these discontinuous transport equations

are well-posed in W 1'_°, provided their coefficients are one-sided Lipschitz continuous.

Such (backward) transport equations arise as the adjoint problems for the forward error

equation governing the difference u, - u. The coefficients of these backward transport equa-

tions are indeed upper-sided Lipschitz continuous, in view of Oleinik's E-condition which

characterizes the entropy solution. This enables us, in Section 3, to derive e-uniform esti-

mate on the Wl'°°-moments of the error u, - u, which in turn, leads to the local recovery of

the entropy solution discussed in Section 4. Finally, we note that our W 1'°° upper-bound on

the moments of the error provides an independent one-dimensional proof of the usual O(V_ )

- Ll-convergence rate mentioned earlier in (1.3).

2. LINEAR EQUATIONS WITH DISCONTINUOUS COEFFICIENTS

In this section we study the linear transport equation

(2.1) t)l+ t)]= 0,

subject to prescribed initial conditions

(2.2) ¢(z,t = 0) = ¢0(z).

Assume that the initial data, Co(x), are Lipschitz continuous. The standard theory tells us

that if a(., t) is sufficiently smooth, say C 1, then there exists a unique generalized solution,

¢(.,t), of (2.1), (2.2), which remains Lipschitz for all time,

(2.3) II¢(.,t)llL,p --< ConstT. n¢0(')nbip, -T < t < T.

The key issue that we address in this section is, roughly speaking, the following question:

What is the minimal degree of smoothness required from a(., t) in order to retain the

Lipschitz continuity 0f the solution ¢(., t)in (2.1)?

The answer provided in our next theorem is in the heart of the matter.

THEOREM 2.1. Consider the linear transport equation (2.1) with Lipschitz continuous

initial data (_._). We assume that

2
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L (Uniform Boundedness). a(x,t) is uniformly bounded.

IL (OSLC). a(x,t) satisfies the following One-Sided Lipschitz Condition.

( )-(2.4) L_[a(.,t)]=essin f a(x,t)-a(y,t) >-re(t), meLl[O,T].
z_ x - y

Then for t > O, there e_ists a unique gipschitz continuous solution, ¢(x,t), of (P.1), (_._),

such that the following estimate holds

Z'(2.5) II¢(.,t)llw,.® ---II¢o(-)llw,,®eM(O, M(t) =- m(r)dr, t > O.

Before we turn to the proof of this theorem, a couple of remarks is in order.

.

.

Theorem 2.1 allows the coefficient a(., t) to be discontinuous; in fact, increasing jumps

are permitted. The OSLC assumption (2.4) requires only the decreasing part of a(., t)

to be Lipschitz.

Theorem 2.1 asserts that the transport equation (2.1) is well-posed only for positive

time. In general, linear hyperbolic equation with smooth coefficients is a prototype of

reversible process. However, since in our case the augmenting OSLC assumption (2.4)

is irreversible, so is the final conclusion of the theorem. Indeed, simple counterexamples

can be constructed (see below), which demonstrate that the backward solution ¢(., t)

may cease to be Lipschitz in a finite negative time t < 0.

PROOF. The proof consists of the usual three st-ps of regularization, a priori energy esti-

mate and compactness arguments.

_(_) be a standard positive C_°-mollifier with unitStep 1. (R.egularization). Let ¢'6(x)= 1 x

mass. We regularize a(.,t) by spatial convolution, a6(.,t) =- a(.,t) • _6, and consider the

regularized equation

(2.6) ,o°[_'(_'t)]+ a,C_,t)O[_,(_,t)]= o, t _>0

(2.7) ¢_(_,t = 0) = ¢0_(_), ¢o_---¢0• f_.

Since we now have a smooth and uniformly bounded coefficient, a6(., t), there exists a classical

C °O solution, ¢6(', t), of (2.6), (2.7). Since this solution propagates with finite speed, a further

approximation by truncation (which is omitted) can be used, so that we may restrict our

attention to the compactly supported case where ¢6(', t)eC_*. Clearly, we have

(2.8) II¢_(.,t)ll_=-I1¢o(-)11_=.
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Step 2. (Wl,_-energy estimate). We want to show that _ is uniformly bounded w.r.t, z, t,

and 6. To this end we shall carefully iterate on the LV-norms of _-_,_bs(., t). Differentiation of

(2.6) implies

OCs_[_bs(z,t)] + [as(x,t)%bs(z,t)] = O, 42s ==- Oz '

or, equivalently

(2.9) b_[C_(x,t)]+ as(x,t) [¢sC_,t)]= ---
0
a_ [as(,, t)]¢_(_, t).

Integrating (2.9) against p42t_-l,p even, over the compact support, we find

and after further integration by parts on the left we arrive at

d_,l_bs(., t) ,,_.d a=(2.10) = iv- 1)[-

We now invoke the OSLC assumption on the coefficient a(.,t). Since es was chosen as a

positive mollifier, as = a * ¢s satisfies the same OSLC (2.4), namely

(2.11)
a

[a_(_,t)] _<re(t).
Oz

Inserting this into the RHS of (2.10) yields for p even

(2.12)

Therefore'

dll_s(.,t)llL _ (p- x)m(t)ll_s(-,011_,.

(2.13) II_bs(-,t)llL__<II_s(',t= 0)ILL,"e_M(*),

and by letting p T c¢ we conclude

(2.14) II_¢s(.,t)ltL- _<11_¢o6(')11L-"_M(,)

tu(t) = m(_)d_, t > 0,

II_o(,)llL_,eM(°, t > o.

Since a (and likewise as) is assumed to be uniformly bounded, we can use the equation (2.6)

to upper-boundthe temporal derivative as well,

(2.15) II_t6(',t)llL® --- Ila(.,011_ -. ll_o(')tlLi_" eM(0, t > 0.

Step 3. (Compactness). By (2.14), (2.15), the uniformly bounded family {_bs} is equicon-

tinuous - in fact equiLipschitz, and shares a common compact support. Therefore, we can

.=
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extract a subsequence, still denoted by Cs(m,_), which converges uniformly to a Lipschitz

limit function, ¢(m, t). We observe that

0

_/¢(., weak- • in

¢',_) weak inL _,
0

¢_(.,t) -_ _ (. - •

a6(.,t) --_ a(.,t) strongly in L 1.

Passing to the limit 6 _ 0 in (2.6) we conclude that ¢(x, t) is a Lipschitz (generalized) solution

of the transport equation (2.1), (2.2). Similarly (2.5) follows from (2.8), (2.14) and we are

done.

REMARKS.

1. The Wl'°°-energy estimate revisited. Consider the /2' a priori estimates in (2.13).

The case p = 1 (odd p's can be justified by further approximation argument which we omit),

leads to usual BV-contraction of the solution operator associated with (2.6). The proof of

Theorem 2.1 hinges on the observation that with the help of the OSLC assumption 2.4, one

can iterate on higher L p norms at the expense of an additional bounded (w.r.t. 6) exponent.

An alternative proof of this essential L °_ bound, (2.14), is provided by the following duality

argument. If ),6(z, t) solves the adjoint equation of (2.6)

then As(x,_) = J= A6(_, _)d_ satisfies the backward transport equation

0(2.16) N[A_(x,t)] + -.dx, t) [hd_,t)] = 0, t <__T.

Integrating this against sgnA_(m, t) we obtain - in view of the OSLC assumption (2.4),

(2.17) ]lAs(',t)Hr.' > IlAd.,0)ilL,. e-M(°, t > o,

which is the dual estimate of (2.14).

2. __haracteristics. The transport equation (2.1) is governed by the evolution of the

characteristics

(2.18) _ =,_(_,0.

If a(.,t) is at least Lipschitz continuous, then the ODE (2.18) leads to a 'nice' unique

reversible flow. For our purpose, however, we need less. Namely, in order for ¢(.,_) to
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remain Lipschitz for t > 0, we have to guarantee that while tracing characteristics backward

in time, different characteristics are not pulled apart. The OSLC assumption is sufficient to

guarantee that (2.18) generates such a 'nice' Lipschitz flow backward in time. The following

examples demonstrate our point.

Example 1. We set

(2.19) a(m,_) = sgnz.

Then the Lipschitz continuous solution of (2.1) is given by

(2.20) ¢(_,0 = ¢0((_- _)++ (_ + 0-).

Example 2. We reverse the sign in (2.19),

(2.20) a(m,t) = --sgnm.

Now a(.) has a decreasing jump, and this case is not covered by Theorem 2.1. Indeed,

different forward characteristic solutions of

(2.21) _ = -sgnz

may impinge one on each other at finite time. Hence, the backward flow generated by (2.21) is

ill-posed, and the hyperboiic solution transported along these characteristics cannot remain

Lipschitz for _ > 0.

Example 3. We consider the equation

(2.22) _=(T-z)_, 0<a<1,

which is 'solved' backwards (of course, the solution is not unique in this case), starting with

the final time T > 0. Here, a(z) = (T- x) _" fails to satisfy the OSLC assumption (2.4),

although the analogue one-sided HSlder condition holds. Consequently, the corresponding

forward transport solution will be only HSlder continuous. In contrast to (2.22), let us

consider the case

(2.23) _ = .(_), _(_) = -(T- _)_, 0 < _ < 1.

Although a(z) is only HSlder (but not Lipschitz) continuous, the OSLC assumption (2.4) is

now fulfilled thanks to the judicious minus sign in (2.23), and the result of Theorem 2.1 is

valid.

In the next section we study the error equation associated with the conservation law (1.1)

and its viscous regularization in (1.2). The dual problem of such an error equation leads to

a backward transport equation like (2.1). For future reference we therefore state
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THEOREM 2.2. (The backward transport equation). Consider the linear transport equa-

tion

(2.24) + =0, _<T,

with Lipschitz continuous data prescribed at t = T,

(2.25) ¢(x,t = T) = ¢(x).

We assume that

I. (Uniform Boundedness). a(x, t) is uniformly bounded.

II. (OSLC). a(x, t) satisfies the following One-Sided Lipschitz Condition.

(2.26) L+[a( • t)]-esssup(a(z't)-y(Y't)) +, < re(t), meL'[t,T].
:_v X --

Then fort < T, there exists a unique Lipschitz continuous solution, ¢(x,t), of (2.24), (2.25),

such that the following estimate holds

(2.27) II¢(.,t)llwl.®< II¢(.)llw,._. eM(°, M(t) = m(r)dr, t <_ T.

3. A PRIORI ESTIMATE ON MOMENTS OF THE ERROR

We return to the scalar, genuinely nonlinear (say, strictly convex) conservation law,

(3.1) 0 O_[u(x,t)]+ [f(u(x,t)) l=0, t>0, f"_>_>0.

It is well-known, [8], [15], that the unique entropy solution of (3.1) is characterized by

Oleinik's E-condition [11]

(3.2) u(_,t)-_(y,t) < Z t > 0.
x-y - st'

Later on we shall need a slightly stronger version of this E-condition - interesting for its own

sake, which is the content of our next result.

THEOREM 3.1. Consider the (possibly degenerate) parabolic reguIarization of (3.1),

a o[f(_,,(_,t)) ](3.3) _[_,(_,t)] +

Then the following estimate holds

(3.4)

62 •

= cb-_z_[Q(_,,(_,t))],_Q' >_o.

L+[Q(u,(',O))] fi = rain f"( •)
L+[Q(u'("t))] < 1 + _tL+[Q(u,(.,O))]' _ > O.

7



PROOF. Let us first assume that Q' is strictly positive, so that the uniformly parabolic

equation (3'3) admits a smooth solution. Multiplylng (3.3) by Q'(u,(x,t)) we obtain

0 _ , b 2(3.5) _-_[Q(u,)] + a(u,),,w [Q(u,)] = ¢Q (u,)-_x2[Q(u,)], a(.) - f'(.).

Next we denote

(3.6) ,_,(=,t)= _[Q(_,(_,t))]_=O'(_,,l_[_,,(=,t)].
Differentiation of (3.5) w.r.t, x yields

a-T+[,,(,,,)-_Q,-T_,)_,JT= + q,(,.,----_,,,,_, :J_--_=_.

By a standard regularization argument of the Heaviside function (which we omit), (3.7)

implies for w + =_ H(w,)we,

(3.8) o_,+ O"(_,,)__a_,++#(,.,,+)_< a_,+at + ["(_")- "_ "' o= _Q'(u,)0=2•

The maximum principle shows that (3.8) is dominated by Ricatti equation

d +
g/[s_p_oe(=,t)]+ #[sup_+(=,t)]" _<0,

which in turn leads to (3.9),

1 L+[Q(u,(.,O))]
(3.9) L+[Q(u,(',t))] = supw+(x, t) <- 1 =

• ,up.,o+(=.o) + fit 1 + fltL+[Q(u,(.,O))]"

Finally, we treat the possibly degenerate case where Q' _> 0. As in [18], we introduce a

further regularizatlon where Q(u,) is replaced by Q'(u,) = Q(u,) + Eu,, and (3.4) is then

recovered by letting 8 _ O.

REMARKS.

I. Theorem 3.1 covers the convective porous medium equation where Q(u,) = I_,1"_,,

.7>0.

2. In view of the convexity assumption on f, we may set Q(u,) = a(u,) and obtain

L+[a(u,(',O))]

(3.10) L+[a(u'("t))] <- 1 + tL+[a(u,(.,O))]"

Since in this case (where Q'(u,) > a > 0)' u,(x,t) converges strongly to the entropy solution,

u(x,t), of (3.1), the e $ 0 limit of (3.10) also gives us

L+[a(u(.,O))]
(3.11) L+[a(u(.,t))] <_

I + tL+[a(u(.,O))]"



The a priori estimate (3.11), stated in somewhat weaker form, can be found in [5, Theorem

1]. It shows that the compact solution operator of the nonlinear problem (3.1) tends to

'linearize' the problem as ax(.,_ T oo) = 0. As noted in [5], the inequality (3.11) requires f

to be merely C 1, and is sharper than both - Oleinik's result (3.2) as well as its generalization

in [2, Proposition 1] which apply to 0 2 fluxes.

3. Theorem 3.1 implies, in particular, that the positive variation of Q(u,(., _)) supported

on any compact domain is bounded. Consequently, the total variation of Q(ue(',_)) over

such domains is upper-bounded by

IIQ(,,e(.,O)llBv< C°nsto"1 L+[Q(,,,(.,O))] <- + _tL+[Q(uJ.,O))] -
(3.12)

maxQ' L+[a(u,(.,O))]
< Const0

mina' 1 + tL+[a(u_(.,O))] '

where Const0 equals twice the size of suppQ(u,(., t)) We note that (3.12) holds for BV initial

data, ue(., 0), over arbitrary domains (with a different coefficient Const0).

Equipped with Theorem 3.1, we now turn to the main of this section - the local conver-

gence rate of small viscosity solutions for uniformly parabolic equations

(3.13) N[,_.(_,t)]+ [/(,_.(_,t))]= e [Q(,_.(_,t))], t >_o, Q' >_q > o.

The difference between u. and its entropy limit u,

e,(_,_)= ,_(_, _)- '_(_,O,

satisfies the error equation

(3.143) [e.(x,t)] + [-_.(x,t)e.(_,t)] = e-g-_[q(u.(x,t))], t >__O,

where g.(x, t) denotes the mean-value

I'(3.14b) _.(x,0 = __oa((_.(x,t) + (1 - ()u(_,t))dL

We recall that Theorem 3.1 applies to both u.(x, t) and its entropy limit u(x, t). In particular,

in view of the strict convexity of Q, (3.4) implies

1 L+[Q(u,(.,O))] t > O,
L+[u,(.,t)] < -.

- q l+fltL+[Q(u.(.,O))] '

9



and in view of the strict convexityof a, (3.11) implies

1 L+[a(u(.,O))] t > O.L+[_,(.,t)]< -.
- a 1+ tL+[a(u(.,O))]'

Inserting the last two inequalities into (3.14b) and using the convexity of a(., t) once more,

we find after little rearrangement the following.

PROPOSITION 3.2 (0SLC). The averaged convective velocity "5,(z,t) given in (3.I4b)

satisfies the OSLC

(3.15) _L+o
L+[-_,(.,t)]< re(t), m(t) = 1+ tL+"

REMARK. The constants L0+ < oo and ,1 > 1 are given respectively by

(3.16a) L + = max(L+[a(u,(.,O))],L+[a(u(.,O))])

max a I • max Q'

(3.16b) _ = rainal. _n Q''

Let us now form the dual problem of the error equation (3.14).

backward linear transport equation

(3.17a) 0_-_[¢,(x,t)] +_,(z,t) [¢,(x,t)] = 0, t < T,

with, say C 1 data, independent of _ prescribed at t = T,

This is given by the

(3.17b) ¢,(z,t = T) = ¢(z).

Although _(., t) may - and in the generic case, will be discontinuous, Proposition 3.2 tells

us that Theorem 2.2 applies in this case; namely, by (2.27) we have

(3.18) II¢,(',t)llLip_<\ i -__ II ILL", 0 _<t ___T.

We are now ready to proceed with our main result announced earlier.

We convolute the error equation (3.14a) against ¢,(.,t) over its cdrnpacfsupporti we

convolute the adjoint equation (3.17a) against e_(.,t); their sum results in

d t 0_
(3.19) _e,(., ) • ¢,(.,t) = ,-_-_z2[Q(u,(.,t)) ] • ¢,(.,t).

10
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Equation (3.19) governs the evolution of moments of the error. By (3.12) and (3.18), its

RHS is upper-bounded by

0 2

il_y_,[Q(u,(.,t))]. ¢,(.,t)liL= < _llQ(u,(',t))il_vIl¢,(',t)llLip<
(3.20)

_n a' _(1+ TLo+)"gConst o • Lo+ .
maxQ' "(1 + tL+) '7+1 It ILL-', 0 < t < T.

Temporal integration of (3.19) together with (3.20) yields

THEOREM 3.3. Let u(x,t) and u,(x,t) be the entropy solution and the corresponding

viscosity solution of (3.1) and (3.13), respectively. Then there exist constants g > 0 and

_l >- 11 such that for any OLfunction, ¢(x), the following estimate holds

f(3.21) II'_&,T)*¢--'_(',T)*¢IIL_<--K(I+L_T)'+ltl II_®'[e+il ('_&,0)-'_(',0))IIL_I.

The dependenceof the error estimate(3.21)on the initialdata, u(.,0) and u,(.,O), is
reflected by the following two quantities:

1. The W -1'1 size of the initial error. Of course, in order to obtain the desired O(e)

convergence rate, we shall need a rather weak consistency assumption in this direction,

requiring

(3.22) Iiu,(., 0) - u(., 0)llw-_._ _< Const.. e.

2. The one-sided Lipschitz size of the initial data, measured by

L + = max(L+[a(u_(.,O))], L+[a(u(',O))]).

We restrict our attention to initial data for which L + is finite, i.e.,

, , ess sup _< Const.
=#v xCu

In other words, (3.23) assumes general initial data as long as they do not contain non-

Lipschitzian increasing discontinuities; in particular, arbitrary C 1 initial data are permitted.

It would be desirable to extend our result to arbitary BV initial data. In this context, the

reader is referred to [4] for an almost optimal convergence result for the case of monotonically

increasing initial data.

1The constants K and _/may depend on the strictly positive extreme values of/" and ¢_ (and K may

depend on the size of supp¢), but otherwise are independent of • and _.
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We haveshown

THEOREM 3.4 (Uniform estimate on the moments). Let u(z, t) and u,(z,t) be the en-

tropy solution and the corresponding viscosity solution of (3.1) and (3.13) respectively. We

assume that

A. The initial viscosity data, u,(., 0), is consistent with the initial entropy data, u(., 0),

in the sense that (3.22) holds.

B. The increasing part of the viscosity and entropy initial data is Lipschitz, i.e., (3._3)

holds.

Then .for any T > O, there ezists a constant K = K(T) such that for all Cl-functions,

¢(x), wehave

(3.24) [lu,(., T) • ¢ - u(.,T), ¢[IL- < K.e. II IIL-.

REMARK. Theorem 3.4 suggests W -1'1 as a possible weak topology to study the conver-

gence of u,. P. D. Lax [7, p. 191] used a similar setup to prove convergence (without a rate

estimate) already in 1954.

The estimate on the moments of the error in Theorem 3.4 can be converted into an L 1

error estimate at the expense of 'losing' an additional factor of V"£. This results in the usual

O(x/' _ L_-convergence rate in agreement with, [6], [12]. We close this section with

COROLLARY 3.5. (LP-error estimate). Assume that the conditions of Theorem 3._ hold.

Then for any T > 0 and p > 1 there ezists a constant K (which depends on T and _, but

otherwise is independent oft) such that

(3.25)
1

IIu,(.,T)-u(.,T)IIL, < K.c_, p>_ 1.

PROOF. Let ((x) be a C0_ functionw]th=Unit mass. For any eel °° we consider

(3.26) e,(.,T) * ¢ = e,(.,T) • ¢6 + e,(.,T) * (¢ - Ca),

By Theorem 3.4, the first term on the right does not exceed

(3.27)
d¢6

I[e,(.,T) • ¢611L- <__g._. --_--zIlL- < Const._. I1¢11_®-

12



By (3.12),u,(.,T), and likewise, u(., T), have bounded variations, and hence the second term

on the RHS of (3.26) is upper bounded by

(3.28)

P

= Jv ec(y, T)¢(.- y)dy-

1 z

ec(.,T) * (¢ - ¢,)

= [ [e,(y,T) - e,(y - z,T)]¢(.- y)dy]-_(-_)dz <

Const.611¢lJL 

Inserting (3.27) and (3.28) into (3.26) we obtain

g

]/e_(x,T)¢(x)dx] < Const.(_ + 6)]I¢]]Loo.(3.29)

Choosing the free parameter 6 .._ x/_, (3.29) with ¢ = ev-l(.,T) yields

(3.30) He,(-,T)H_,_ _< Const.x/_Hec(', T)II_L 1,

and the result (3.25) follows.

4. LOCAL ERROR ESTIMATES

In the previous section we proved that the error between CLmoments of u, and the

corresponding CLmoments of u is of order c. In this section we show that given u,, we can

use its moments in order to recover pointwise values of u (and any of its derivatives) with

an error as close to _ as desired.

The idea of such recovery technique is not new. The reader is referred to Mock and Lax

[9] who post-processed difference approximations in order to recover accurately the pointwise

values of discontinuous solutions for linear hyperbolic equations. Their approach was later

extended in [1] and [3] to include spectral and edospectral approximations for such equations.

We shall give a bird's eye view of both approaches to the post-processing technique in the

present context of nonlinear equations.
=

Assume that u(-, T) is smooth in some fixed 8-neighborhood of x, say

(4.1) u(.,T)eCP(x-8,x +8), p>_ l.

Let ¢(x) be a C_' function supported on the (-1,1) interval such that

/2 /:(4.2) ¢(x)dx = 1, xkC(x) = 0, k = 1,2,...,p- 1.
1 1

13



1 x

With ¢6(x) = _¢(g), where a¢(O,O) is a free parameter to be chosen later, we have

6P

(4.3) l(u(.,T) * ¢6)(x) - u(x,T)] __ _llCllL_" Hu(',T)llw,.'(=-a,=+a) •

The error bound in (4.3) can be made small in two ways: by decreasing G - the size of suppes,

as was done in [9]; and by increasing p - so that further cancellation due to the oscillatory

behavior of ¢ occurs, as was done in [3]. We shall the sketch the details of both ways.

By Theorem 3.4 we have

de, ± id¢
(4.4) I(u,(.,T).¢,)(x)-(u(.,T).¢6)(x)l < K.c. II-_-xIlL= < K. 52 d=llL=

We now have two types of error estimates: mollification in (4.3) and approximation in (4.4).

If we choose the free parameter 6 as

1

( _ )F_-'i ]uO,)llo¢ = Hu(.,T)Hwp.oo(z_o,,+s) ' =(4.s) 5 = 0 1+ I=+)1,o: '

then the contribution of the two error terms is of the same order and (4.3), (4.4) yield

(4.6) I(ug., T) • ¢,)(x) - u(=, T)I _ Constp. (1 + lu(n)llo¢) ;_. eP-_.

Thus, the ¢,-moments of u,(.,T) recover the pointwise values of u(.,T) with accuracy as

close to e as the local smoothness of u(., T) permits.

The estimate (4.6) makes use of a dilated localizer ¢(z) whose support lies in the interval

(-1,1). If, instead, we choose the support of ¢(x) to lie in, say (0,1), then (4.6) holds with

lu(P)lloc restricted to [x+,z + O),

(4.6) Id_)llo: = Ilu(', T)llw,.-[=+,:+0).

Thus we are able to recover pointwise values of u(., T) up to the discontinuity.

In a similar manner, we can recover any spatial derivative of the entropy solution,

_--_,u(., T). Indeed, Theorem 3.4 gives us

0, 0 • do+1¢_ _ d'+1¢
(4.7) ](-_-_-;xu,(.,T)*¢s)(x)-(-_iz, u(',T)*¢s)(:r)l <_ g'e'll_llL°_ <- K'-_7_:H d'_VCfH_,',

Hence, by choosing

( )-g

(4.8) 6 = o t + I_,(_+.)1,oo

1
p+s+_

, I_¢_+:)l,o==ll_(.,T)llw,+=.=<=+o._),

we obtain a generalization of (4.6) to higher derivatives, which we summarize in

14



THEOREM 4.1. Assume that the conditions of Theorem 4.3 hold. Then if we choose es(x)

as described above (4.2), (4.8), the es-moments of o°--;j.uc(., T) recover the pointwise values of

u(.,T) and its derivatives, and the following estimate holds,

O, 0 ° .._s__
(4.9) I(_-;x u,(.,T) * es)(z) - _-_-;x,u(z,T)I <_Constp. (1 + I_(p+°)lloo)_. c,÷.+,,

Next, let us consider the generic case of smooth initial data, u(x, O)eS. Then, the entropy

solution of (3.1)(with C °o convex flux f)is piecewise smooth [13]. In this case, we are able

to recover the pointwise values of o°-_,u(z, T) with error as close to e as desired, if we take p

large enough in (4.9).

We close this section with a brief description of the spectral post-processing technique

[3] which enables the pointwise recovery of u(., T) and its derivatives.

We restrict our attention to the case (4.1) where the symmetric interval (x + 8, z + O) is

free of discontinuities of u(., T). Let ¢'(z) be a C_°(-1, 1) function, normalized such that

(4.10) = 0) = 1,

and we set

1 z x 1 sin(N+½){

(4.11) eN(Z) = a¢(_)DN(_), DN(_) -- 27r sin!_
2

We note that in this case the support of the regularization kernel, eN(X) is kept fixed.

Instead, by increasing N, we obtain a highly oscillatory kernel whose monomial moments

satisfy (4.2) modulo a spectrally small negligible error.

Standard error estimates for the truncated Fourier projection, SN, give us [3, Section 3]

I(u(., T) • eN)(x) - u(x,T)l = I(I - SN)[u(x - O.,T)((.) - u(x,T)](O)l

(4.12)
InN u

<_ Constp .---_II (',T)llw,._(x-e,_+e).

Applying Theorem (3.4) with ¢ = eN we find

deN 00 N 2.
(4.13) I(uc(.,T)*¢N)(z)--(u(.,T)*¢N)(z)I <_g'e'll--_-z IlL - Const.e.

Hence, by choosing

(4.14) N .._ ('u(_'l°_) ;_- , ,u('),lo_ = nu(.,T)Hw,,..(_-o._+o)

we recover from (4.12), (4.13) the local error estimate we had in (4.6), namely we have

(4.15) I(u,(., T) • ¢N)(z) - u(z, T)I < Constp. lu(P)h'o-_$._,-_.

15



5. CONCLUDING REMARKS

The results of Section 4 hinge on the a priori estimate of the moments in Theorem

3.4, which, in turn, is based on the Wl'_C-energy estimates for the OSLC satisfying finear

transport equations studied in Section 2. In this section we provide still another derivation

of Theorem 3.4 which amplify the direct linkage between the OSLC and Theorem 3.4. To

demonstrate our point we will concentrate on the, say 2% periodic case.

Let

=

denotes the difference between the primitives of the small viscosity approximation, U,(z, t) =

.f® u,(_,t)d_, and that of the entropy solution, U(x,t) = ff u(_,t)d_. Integration of the error

equation (3.14a) gives us

(5.2) _[E,(z,t)] +'_,(Z,t,) _---_[E,(z,t)] = c-_z [Q(u,(x,t)) ].

We shall now energy estimate (5.2) along the lines of our study of irreversible linear transport

equations in Section 2, compare (2.16). Integrating (5.2) against sgnE¢, we obtain

dHE.(.,t)IIL, + __,(x,t)_---_[E,(x,t)]dx=

(5.3)

J.

Integration by parts of the second term on the RHS of (5.3), together with the upper bound

of the RHS by the BV estimate of Q(u,(.,f.)) in (3.12), yield

, go(5.4) d-_llE,(.,t)]lL, _< [_,(z,t)]. E,(x,t)dz + Const.e.

Thanks to the judicious positive sign on the right, we may now use the OSLC (3.15) to

obtain

(5.5) dllE,(-,t)llL, _< m(t)llE,(.,t)llL, + Oonst.¢.

By integration of the last inequality we conclude - in agreeement with Theorem 3.4, that

(5.6) IIU,(.,t)- v(.,_)ll,., _<K.¢, 0 < t < T.

Using this we can derive L ¢_ (and consequently, L p) estimate as follows. Let E_(x, t) assumes

the Fourier expansion

(5.7) E,(z,_)= _ E(k,_)e '_'.
Ikl_<_¢
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By (5.6) we have

i K

(5.8) Ik,(k,t) ____llEe(',t)llu < _'_.

Moreover, since both u,(.,t) = _U,(.,t) and u(.,t) - _U(.,t) are uniformly BV (w.r.t. e),

their k-th Fourier coefficients decay like < Ik[ -x, and hence

1

(5.9) Ik,(k,t)l _ Const. l-_-_l?, Ikl >__1.

Inserting (5.8), (5.9) into (5.7) we find

K 1

(5.10) IIE'(',t)IIL _ -< E 2"-_ "_ -4- E Const._-_ _< Const.v/'_.
Ikl____, lkl>_r,

Standard interpolation between the L 1 error estimate in (5.6) and the L _ estimate in (5.10)

gives us

THEOREM 5.1. Assume that the conditions of Theorem 3.4 hold. Then for any T > 0

there exists a constant K = K(T) such that

(5.11) iiu,(.,t)_u(.,t)ll_> K.er'J_'_ _, p>_ I, 0<t<T.
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